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SUMMARY

In this paper we discuss a number of issues that are pertinent to the analysis of disease mapping data. As
an illustrative example we consider the mapping of larynx cancer across electoral wards in the North West
Thames region of the U.K. Bayesian hierarchical models are now frequently employed to carry out such
mapping. In a typical situation, a three-stage hierarchical model is speci�ed in which the data are modelled
as a function of area-speci�c relative risks at stage one; the collection of relative risks across the study region
are modelled at stage two; and at stage three prior distributions are assigned to parameters of the stage two
distribution. Such models allow area-speci�c disease relative risks to be ‘smoothed’ towards global and=or
local mean levels across the study region. However, these models contain many structural and functional
assumptions at di�erent levels of the hierarchy; we aim to discuss some of these assumptions and illustrate
their sensitivity. When relative risks are the endpoint of interest, it is common practice to assume that, for
each of the age–sex strata of a particular area, there is a common multiplier (the relative risk) acting upon
each of the stratum-speci�c risks in that area; we will examine this proportionality assumption. We also
consider the choices of models and priors at stages two and three of the hierarchy, the e�ect of outlying
areas, and an assessment of the level of smoothing that is being carried out. For inference, we concentrate
on the description of the spatial variability in relative risks and on the association between the relative
risks of larynx cancer and an area-level measure of socio-economic status. Copyright ? 2000 John Wiley &
Sons, Ltd.

1. INTRODUCTION

Disease mapping may be carried out for a variety of reasons including simple description, and
the assessment of the degree of spatial and non-spatial variability in rates=relative risks.
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A model-based approach may also be used to determine the ecological association between area-
level explanatory variables and disease risk [1]. In this paper we examine a number of issues
related to the estimation and interpretation of disease mapping data. We do this in the context of
a study of larynx cancer incidence in 213 electoral wards in the North West Thames region of
the United Kingdom (U.K.) in the period 1985–1993. We initially consider data by sex and by
�ve age-bands: 35–44; 45–54; 55–64; 65–74, and 75 years and over. There are very few cases in
those below 35 years of age and so we do not consider this group.

1.1. Epidemiological background

Laryngeal cancer is relatively common in males, though much less common in females. The
male : female ratio is typically between 6:1 and 10:1. In France, the male age standardized incidence
rate varies from 6.0=10 000 per year to 14.8=10 000 per year between di�erent cancer registries.
In Britain, the range is from 3.2 to 6.9, with the highest rates in Scotland [2]. The incidence of
laryngeal cancer is rising in many European countries, falling in some, and remaining steady in
others [3]. While some of this variation is due to di�erences and changes in smoking behaviour,
other causes, including changes in alcohol intake, are probably operating also. Trends in mortality
do not follow trends in incidence closely, perhaps due to improving treatment [3]. Little is known
about smaller scale spatial variation in the incidence of laryngeal cancer.
Laryngeal cancer is mainly a disease of smokers, and both relative and attributable risks of

laryngeal cancer amongst smokers are very high [4–6]. Alcohol use is a very important risk
factor in most [5; 7; 8], but not all, studies [9]. There is evidence of a link with poverty [10]
and poor diet is also an important risk factor; studies have shown increased risks associated with
diets poor in vitamins C and E and beta carotene, and with high intakes of preserved meat,
animal fats and with low intakes of fruit and dark green vegetables [6; 9; 11; 12]. Occupational
risks have been identi�ed, but their importance remains unclear [7; 9; 13]. Two studies of reported
clusters of laryngeal cancer around industrial sites have produced negative results [14; 15]. The
relationship between laryngeal papillomas, caused by a viral infection, and laryngeal cancer is still
obscure [16].

1.2. Data

The raw data are in the form of disease counts, Yij, and population counts, Nij, where i=1; : : : ; I ,
indexes areas (wards) and j=1; : : : ; J indexes strata (age–sex groups). For the larynx cancer data
we have I =213 and (initially) J =10. For rare and non-infectious diseases we may then assume

Yij ∼ Poisson(Nijpij) (1)

where pij is the incidence of larynx cancer in ward i and strata j. Note that this model assumes
constant risk within each area × stratum combination. In many cases this is a reasonable working
hypothesis, although the discretization into areas and strata is an arti�cial construct and does
not necessarily coincide with changes in risk. Further discussion of the tenability of the Poisson
assumption may be found in Hoem [17]. Errors in the numerator (for example, under-registration
of cases), and the denominators (for example, under-enumeration at census) may also lead to
inadequacies in the Poisson model; errors of this type are described more extensively in Wake�eld
and Elliott [18].
In model (1) we have I × J probabilites to estimate and it is clear that, in general, a reduction

in the number of parameters is required. For example, for the larynx cancer data, there are 2130
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Table I. Summary of health, population and deprivation data across 213 Thames wards
for the larynx cancer data.

Minimum 25% 50% 75% Maximum Mean

Cases, male 0 0 3 4 12 2.8
Cases, female 0 0 0 1 3 0.5
Cases, total 0 2 3 4 12 3.3

Expecteds, male 1.1 2.1 2.7 3.4 5.7 2.8
Expecteds, female 0.2 0.4 0.5 0.6 1.1 0.5
Expecteds, total 1.3 2.4 3.2 4.0 6.8 3.3

Populations, male (×103) 0.9 1.6 2.0 2.4 4.1 2.0
Populations, female (×103) 1.0 1.7 2.2 2.8 5.0 2.3
Populations, total (×103) 2.0 3.3 4.2 5.3 9.1 4.4

SMRs, male 0 0.5 0.9 1.5 7.8 1.1
SMRs, female 0 0 0 2.3 8.2 1.1
SMRs, total 0 0.5 0.9 1.4 6.6 1.1

Carstairs deprivation index −3:6 −0:4 1.6 3.9 11.7 2.0

probabilities in the saturated model with just 703 cases. Therefore, the model is usually simpli�ed
by assuming that

pij = �i × qj (2)

where �i represents the relative risk in area i and qj is the reference incidence in stratum j. Under
this assumption we have

Yi ∼ Poisson(Ei�i) (3)

where Yi=
∑

j Yij and Ei=
∑

j Nijqj denote the observed and expected number of cases in area i.
Table I displays summary statistics for the larynx cancer data. We note that, as expected, there

are far fewer cases for women than for men. For each sex the expected numbers are calculated over
the �ve age groups with qj =

∑
i Yij=

∑
i Nij, j=1; : : : ; 5. We note that standardization in this way

will produce reference age probabilities that will also reect environmental exposures if these are
not distributed independently across age groups. The table also summarizes the Carstairs measure
of socio-economic deprivation [19]. This index is calculated from census variables concerning
overcrowding, access to a car, social class of head of household and unemployment. These variables
are standardized and combined to give a continuous score, with high values indicating greater
deprivation. Using this index allows some account of socio-economic status to be taken. Socio-
economic status is well known to be a strong predictor of disease [20]. The mean of this index
across the U.K. as a whole is zero and so we see that the study region is relatively deprived
(though there is a large spread of deprivation across the region). From this point onwards we
consider males only due to the sparsity of female cases.
The analyses that we present in Sections 3 and 4 are intended for two purposes: for description

in order to examine the spatial variability in larynx cancer relative risks, and for consideration of
the ecological association between the risk of larynx cancer and the Carstairs measure of socio-
economic status.
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The structure of this paper is as follows. In Section 2 we describe a three-stage hierarchi-
cal model that has been conventionally used for disease mapping and highlight key assumptions
within this model. In Section 3 we present initial exploratory analyses of the larynx cancer data,
including an examination of the proportionality assumption (2). In Section 4 we present a more
comprehensive analysis and in Section 5 provide a concluding discussion.

2. STATISTICAL FRAMEWORK

In this section we describe a three-stage hierarchical model which may be used to analyse disease
mapping data; Molli�e [21] contains further details. We begin by assuming that the �rst stage
model given in equation (3) is appropriate, and return to the assessment of proportionality in
the next section. The maximum likelihood estimator (MLE) of the relative risks from model (3)
corresponds to a standardized mortality=morbidity ratio (SMR)

�̂i=
Yi

Ei
(4)

The variance of this estimator is proportional to E−1
i and so for areas with small populations

there will be high sampling variability. Thus, for example, if the SMRs are mapped, large rural
areas with low populations will often appear to display high risk due to the high variability of
these estimates. The mapping of signi�cance levels in order to overcome this problem produces
its own di�culties since areas with large populations are more likely to attain signi�cance, even
if the excess risk is small [22]. Another di�culty with the use of SMRs for inference is that,
for small areas in particular, SMRs in areas that are geographically close tend to display positive
dependence, that is, positive spatial autocorrelation. If this aspect is ignored, incorrect inference
will result; in particular, standard errors of ecological regression coe�cients will be too small.
Figure 1 shows the mapped SMRs for larynx cancer for males in the Thames study area. From
this map and Table I we see that there is a reasonable amount of variability in relative risks across
wards, but interpretation is di�cult due to the aforementioned problems.
To overcome these problems, Besag et al. [23] suggested combining (3) with the following

model for the relative risks:

log �i=X T
i � + Vi + Ui (5)

where Xi=(Xi1; : : : ; Xik)T is a k × 1 vector of area-level risk factors, �=(�1; : : : ; �k)T is a k × 1
vector of regression parameters (with e�l representing the relative risk due to risk factor Xl,
l=1; : : : ; k), Vi, i=1; : : : ; I represents a ‘residual’ with no spatial structure (so that Vi and Vj are
independent for i 6= j), and Ui, i=1; : : : ; I represents a ‘residual’ with spatial structure (so that Ui

and Uj are modelled to have positive spatial dependence).
Model (5) forms the second stage of the hierarchical model. We let U =(U1; : : : ; UI )T, V =(V1;

: : : ; VI )T, and  denote the hyperparameters, that is, the parameters of the variance-covariance
matrices of the distributions of U and V . As discussed above, unmeasured risk factors, arti�cial
areal-stratum boundaries and data inaccuracies may lead to the Poisson model (3) being inadequate.
In particular we typically �nd that var(Y )¿E(Y ), that is, the area-speci�c disease counts exhibit
overdispersion. Model (5) allows the spatial and non-spatial modelling of this overdispersion via
the random e�ects Ui and Vi, respectively. If we believed that non-spatial overdispersion only
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Figure 1. Larynx cancer SMRs for men, for 213 wards in the Thames region over the period 1985–1993.

needed to be considered, then it is natural to model exp(Vi) as arising from a gamma distribution
as this leads to a tractable marginal distribution (the negative binomial). The gamma distribution
cannot easily be extended to allow positive spatial dependence (but see Wolpert and Ickstadt [24]
for recent developments). However, the normal distribution does allow such an extension and is
the common choice for both spatial and non-spatial random e�ects. For the unstructured random
e�ects it is therefore often assumed that Vi ∼i:i:d: N(0; �2v).
For the spatially-dependent random e�ects in (5), the problem is to model the I -dimensional

random variable U allowing for dependence between Ui and Uj, i 6= j. At this stage, the modelling
choice is speculative and, contrary to other spatial analyses, little guided by scienti�c consideration.
We may proceed either by trying to specify the joint distribution of U , or by using the univariate
conditional distributions Ui|Uj = uj; j 6= i, i=1; : : : ; I .
In the joint modelling approach a common model for U is the zero mean multivariate normal

distribution NI (0; �2u�(�)). The I × I positive de�nite correlation matrix �(�) contains elements
�ij(�), i; j=1; : : : ; I with diagonal elements equal to one and o�-diagonal elements describing the
correlation between Ui and Uj, i 6= j; � is a c-dimensional vector of unknown parameters. Various
structured forms may be assumed for �(�). A common choice is to assume that the dependence is
a function of the distance, dij, between the population-weighted centroids of areas i and j, that is,
�ij(�)=f(dij; �). A simple one-parameter model that we consider in Section 4 has correlations
given by f(dij; �)= exp(−dij ×�). One interpretation of � follows from observing that log 2=�
is the distance at which the spatial correlation drops to 0.5. Cressie [25] and Wackernagel [26]
contain a discussion of more general forms for the correlation (including anisotropic possibilities).
See also Richardson et al. [27] for comparative inference using di�erent forms of �ij(�). An early
example of a joint formulation based on distance (in an ecological setting) was given by Cook
and Pocock [28].

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2493–2519



2498 C. PASCUTTO ET AL.

Figure 2. Histogram of between ward centroid distances for adjacent wards (top) and non-adjacent wards
(bottom). Wards that share a common boundary are de�ned as neighbours.

In the conditional approach, the intrinsic conditional autoregressive (CAR) Markov random
�eld prior suggested by Besag et al. [23] has commonly been used. This model is given by

Ui |Uj = uj; j 6= i ∼ N
(
�ui;

!2u
mi

)
(6)

where �ui= 1
mi

∑
j∈@i uj, @i denotes the set of labels of the ‘neighbours’ of area i, and mi is the

number of such neighbours. In this model, we need to specify a neighbourhood scheme to reect
our beliefs about the spatial dependence structure between areas. The usual choice is for areas that
share a common boundary to be de�ned as neighbours but this choice is less appealing if the study
area contains areas of greatly varying size and shape. Figure 2 shows histograms of the distances
between adjacent and non-adjacent wards for the larynx cancer data. For random variables on an
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equally-spaced lattice, such histograms would not overlap, but here we see a degree of overlap.
Hence a neighbourhood scheme based on distance might be appealing (see, for example, Best
et al. [29]). An advantage of the distance-based models over the adjacency-based models is that
missing areas (for example, with zero denominators) and discontinuities such as areas of water
or woodland do not pose a di�culty for the former. In addition, models using neighbourhoods
de�ned through adjacency also require the geographical boundaries to be available (as opposed
to the centroids) and for older geographic units (for example, 1981 enumeration districts in the
U.K.) this may pose a problem. More general neighbourhood structures have been suggested by
Besag in the reply to the discussion of Besag et al. [23].
A di�culty with model (6) is the interpretation of the conditional variance !2u. This quantity

cannot be directly compared with �2v which is a marginal variance parameter, or with �2u, the vari-
ance of the joint model. This di�culty of interpretation also makes prior choice more problematic.
Similarly the nature of the spatial dependence in (6) is di�erent from that implied by the joint
model, since, by construction, the spatial correlation between neighbouring areas depends on the
number of neighbours and only indirectly on the distance between neighbours. We also note that
this model is non-stationary; this may be seen as an advantage since it is more exible.
One great advantage of the conditional model is that it is very computationally e�cient due

to the conditional independencies that may be exploited in Markov chain Monte Carlo (MCMC)
estimation approaches (Smith and Roberts [30]). In contrast, the joint model is computationally
expensive since the parameters de�ning elements of �(�) are treated as unknown random variables.
Hence �(�)−1 and its determinant are included in the Gaussian density of the joint posterior. As
a result, a matrix inversion step is required at each iteration of the MCMC sampler for the joint
model and hence this model requires far more computer time for implementation.
The estimation of the regression parameters � in model (5) is subject to the ecological bias

that may result when group-level data are analysed and the inference is transferred to the level of
the individual. In spatial epidemiological studies, the groups are geographical areas. This bias can
occur for a number of reasons [31–35]. As usual in observational studies, bias can result from
confounding, though the situation is more complex in ecological studies since confounders must
be considered both between and within areas. If the exposure is non-constant across each area
(which is almost certainly the case) then, unless the model is linear, the area-level model that
results upon integration over the area does not correspond to the individual-level model; this leads
to what Greenland [31] terms pure speci�cation bias. Note that this form of bias can occur even in
the absence of confounding. Mutual standardization of the response and explanatory variables must
also be carried out to avoid bias [36]. For example, if the response is an age-standardized rate, then
the exposure of interest should also be age-standardized in the same fashion (though unfortunately
the data required to carry out this standardization will rarely be available). The e�ects of these
various sources of bias are di�cult to determine but within-area information on the exposure of
interest and individual-level risk factors will be bene�cial (see Lasserre et al. [37]).
At the third stage of the model, the Bayesian approach that we follow requires speci�cation of

prior distributions for the second-stage parameters � and  . Inference is carried out via MCMC
simulation in which (dependent) samples are generated from the posterior distribution

p(U; V; �;  |y)

where y=(y1; : : : ; yI )T. For the analyses presented in this paper we use the WinBUGS software
[38]. Two simulations were run for each model starting from di�erent initial values; convergence
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was checked by visual examination of trace plots and by calculation of the Brooks and Gelman
[39] diagnostic.

3. NON-HIERARCHICAL ANALYSES

Chapter 4 of Breslow and Day [40] provides a detailed discussion of the �tting and interpretation
of the multiplicative model (2). In particular they consider: the e�ects of marginal estimation
of age e�ects compared to the (generally preferred) joint estimation; assessment of �t through
Pearson’s chi-squared and the deviance statistics; and embedding the multiplicative model within
a broader family that includes the additive model.
We now consider how to assess the proportionality assumption (2). This may be examined

informally via plots of log p̂ij versus log q̂j, where p̂ij =Yij=Nij and q̂j =
∑

i Yij=
∑

i Nij, in those
areas containing su�cient data for reliable estimates. If (2) holds then these plots will produce
a set of vertically shifted lines with slopes of one. Figure 3 shows this plot for 12 wards in
our study region (selected among those with few empty strata). There is some indication that
proportionality may not hold in the penultimate stratum (which corresponds to the 65–74 year
olds) but interpretation is not straightforward since each point has a di�erent precision associated
with it.
A formal method of assessing proportionality may be carried out by �tting the Poisson model

(1) with pij given by

logpij = � + �i + qj (7)

and comparing it with the �t of the saturated model

logpij = � + �i + qj + ij (8)

using a likelihood ratio test (that is, via the deviance). As Table I shows, the data in each ward
are very sparse and this casts doubt on the asymptotic chi-squared distribution of the deviance.
In particular, with small expected numbers the observed value of the statistic may be far smaller
than that predicted by the chi-squared distribution [41]. Hence we carried out a Monte Carlo test
by simulating 999 replicate data sets from model (1) with pij given by (7), with values for �,
�i and qj �xed at their maximum likelihood estimates obtained from the observed data. Models
(7) and (8) were then �tted to each of the observed and replicated data sets and the likelihood
ratio test statistic evaluated. The rank order of the test statistic based on the observed data was
used to derive the Monte Carlo signi�cance level. This procedure led to a Monte Carlo p-value
of 0.866 (based on 999 simulations), indicating no evidence that the simpler model should be
rejected in favour of the saturated model, and hence that proportionality seems appropriate. We
note that the main-e�ects model (7) gave a residual deviance of 789.4 on 848 degrees of freedom
for the observed data. Using the asymptotic test would give p=0:996. We note that the Monte
Carlo test is slightly conservative since we have estimated parameters to carry out the simulation.
On the basis of these results we have no reason to reject the assumption of proportionality.
As stated above, it is generally preferable to jointly estimate the age e�ects and the relative

risks. However, it is often convenient to provide a set of age-speci�c rates qj in order to reduce
the number of data items by calculating the expected numbers in advance. Various possibilities are
available including the use of an external set of rates, or internal standardization via q̂j =Y+j=N+j.
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Figure 3. For selected wards, plot of log p̂ij versus log q̂j , i indexes wards and j age groups. Parallel lines
with slopes of one indicate that proportionality (equation (2)) may be appropriate.

In general, this approach will not produce identical estimates and standard deviations to the joint
estimation of qj and �i and care must be taken since separate estimation may remove some of the
area e�ects. To assess whether there is any loss in carrying out the two-stage estimation, we �tted
the model logpij = �+�i+qj; either with the parameters jointly estimated or with the qj estimated
separately and incorporated as o�sets. Figure 4 displays age-speci�c rates calculated via these two
approaches (and a Bayesian model that we describe in the next section). We see virtually no
di�erences between the rates (and the standard errors are very similar also) and conclude that the
two-stage approach using q̂j is acceptable in this study.
Figure 5 plots the SMRs versus the Carstairs index. Each SMR has an associated 50 per cent

con�dence interval (this value was chosen to produce a clear plot) and a local scatter plot smoother
was drawn through the set of three points (point estimate and endpoints of interval). We see that
there is some indication of increasing relative risk with increasing deprivation for lower deprivation
levels but for higher levels no such relationship can be seen. Figure 6 displays a map of the
Carstairs index, which shows some suggestion of positive spatial correlation, that is, higher levels
of deprivation in the south east and more a�uent areas in the north of the study region.
Figure 5 highlights the presence of an outlying ward with an SMR of 7.77; this ward has 12

cases and an expected number of just 1.54. The cases in such a ward deserve special attention, in
particular the recorded addresses should be checked to see if, for example, these cases have been
assigned to the ward of the clinic they attended rather than to their residences. For the moment
we retain these cases but for the geographic analyses described in the next section will scrutinize
the e�ect of this outlier on inference.
In general it is of interest to see if there are any broad-scale geographic trends in the data and

so we combine (3) with

log �i= � + �e Xie + �nXin (9)

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2493–2519
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Figure 4. Age-speci�c rates from a variety of models.

Figure 5. Estimated relative risks (SMRs), with 50 per cent con�dence interval, plotted versus Carstairs
deprivation score, with local smoother superimposed.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2493–2519
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Figure 6. Map of Carstairs deprivation index; high values indicate greater deprivation.

where Xie and Xin denote the eastings and northings of ward i, respectively. The �t of this model
(assessed via a Monte Carlo deviance test, as before) was a substantial improvement over the
model with no trend. We obtained exp(�̂e)= 1:02 and exp(�̂n)= 0:90 with both parameters being
signi�cantly di�erent from one, and the latter highly so. This indicates an increase in relative risk
of 2 per cent per kilometre in the eastings direction and a decrease of 10 per cent per kilometre
in the northings direction. When the outlying ward is removed these estimates were virtually
unchanged. Figure 7 shows the deviance residuals from model (9) plotted versus deprivation (with
the outlier removed); again we see some suggestion of an association.
To assess the extent of extra-Poisson variability we may calculate the measure of overdispersion

�̂=
∑

i(Yi − Ŷi)2=Ŷi

I − k − 2
(where we recall that k is the number of risk factors included in the log-linear model) corre-
sponding to the quasi-likelihood approach in which var(Y )= � × E[Y ] (for example, McCullagh
and Nelder [42]). For model (9), that is, the model that assumes that the relative risks are only
functions of eastings and northings, the measure of overdispersion is 4.98 with the outlying ward
included, and 4.15 when this ward is excluded. Hence we conclude that, as expected, there is
variability in the relative risks across the map. One aim of our analysis is to estimate the spatial
and non-spatial components of this variability.
Various tests have been proposed to assess spatial autocorrelation in a set of disease rates. Walter

[43] provides a critical review of a number of alternatives including the statistics due to Moran
and Geary. Unfortunately the asymptotic moments of these statistics under the null hypothesis of
no spatial dependence are incorrect when the constituent areas have di�erent population sizes [44].
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2504 C. PASCUTTO ET AL.

Figure 7. Deviance residuals versus Carstairs deprivation score, with local smoother superimposed.

This aspect may be �xed using a Monte Carlo test but another problem remains. Areas with small
populations tend to be geographically close (for example, rural areas) and so will tend to display
spatial dependence and the Moran and Geary statistics were not constructed with this aspect in
mind. Alternatively, a number of authors (for example, Cressie and Chan [45] and Wake�eld and
Morris [46]) have considered examining the spatial dependence between sets of counts using the
variogram. If we de�ne R(x) to be the value of the residual (here we consider deviance residuals,
although Pearson residuals produce virtually identical results) at location x (that is, the population-
weighted centroid of the area), and d= |x− x′| to be the distance between x and x′, we may then
examine the isotropic spatial dependence at a distance d via the semi-variogram

(d)=
1
2
var{R(x)− R(x′)} (10)

In practice, a discrete number of bins are considered and each of the observed distances is assigned
to the bin that it corresponds most closely to. It is appropriate to use the variogram when the
stochastic process under examination follows intrinsic stationarity [25]. In this case the mean is
constant (with, in particular, no trend), and the right-hand side of (10) depends only on the vector
di�erence between x and x′ (and in particular the variance at any point is constant). As d becomes
large, (d) tends to a constant that is equal to the variance for a stationary process. The deviance
residuals have approximately constant variance and to remove the trend we assume model (9).
Figure 8 shows the variogram and we note that (d) appears approximately constant at all distances
(and equal to 1 which is the approximate variance of the standardised residuals). This indicates
that the spatial dependence is not operating at large distances; at short distances there are fewer
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Figure 8. Variogram of deviance residuals from log-linear model in eastings and northings.

points from which the variogram may be estimated however (as indicated by Figure 8). We also
constructed a variogram with the outlying ward excluded and found little di�erence.
Hence at this stage we have observed extra-Poisson variation, little broad scale spatial depen-

dence, an indication of some relationship between risk and deprivation, and an outlying ward. We
have also established that proportionality appears adequate and that little is lost by reducing the
dimensionality of the data via the estimation of qj in advance.

4. HIERARCHICAL ANALYSES

4.1. E�ect of outlying area

As pointed out in Section 3, one of the wards produces an outlying relative risk and in this section
we investigate the e�ect this outlier has on inference. We take model (3) at the �rst stage and
assume, initially, that

log �i= � + Vi (11)

with Vi ∼i:i:d: N(0; �2v); this will be referred to as the ‘heterogeneity only’ model. An alternative
distribution for the heterogeneity random e�ects is the Student’s t-distribution with mean zero,
scale parameter �′

v and � degrees of freedom, that is Vi ∼i:i:d: St�(0; �′2
v ); here we choose �=3.

The variance of a Student’s t random variable, �2v , is related to the scale parameter, �′2
v , via
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Table II. Sensitivity of inference ‘with’ and ‘without’ the outlying ward, all parameters are
posterior means. The ‘Normal’ and ‘Student’s t’ models have log �i = � + Vi, with Vi ∼i:i:d:

N(0; �2v) and Vi ∼i:i:d: St�(0; �
′2
v ), respectively. The ‘Spatial’ model has log �i = �+Vi+Ui, with

Vi ∼i:i:d: N(0; �2v) and an intrinsic CAR prior for Ui. The RR ratio refers to the ratio of the 95th
and 5th percentiles of the distribution of the relative risks and �outlier the estimate of the ward

containing the outlying data.

Normal Student’s t Spatial

With Without With Without With Without

� −0:03 −0:02 −0:03 −0:02 0.00 −0:02
�v 0.28 0.07 0.23 0.09 0.11 0.04
!u – – – – 0.29 0.23
RR ratio 2.6 1.3 1.9 1.3 2.6 2.0
�outlier 2.1 0.99 6.2 0.99 2.0 1.3

�2v = �′2
v × �=(�− 2). The advantage of the Student’s t distribution is that it has heavier tails than

the normal alternative and so inference is more robust to outlying areas. We also used model (11)
with the addition of an intrinsic CAR random e�ect Ui (with Ui and Vi both assigned normal
distributions, and the overall intercept term, �, removed from the model). This will be referred
to as the ‘convolution model’. Table II summarizes inference for each of the analyses, with and
without the outlier. In the analyses that excluded the outlying ward we included the number of
cases for this ward as an unknown parameter. This is not necessary for the non-spatial models but
it easily accounts for the addition of spatial random e�ects with the intrinsic CAR model. We note
that if the joint model were used there would also be no need for the missing number of cases
to be included as an unknown parameter, although this could still be done if inference concerning
the true relative risk in the outlying area is of interest.
As expected, we see that the outlying area has a large inuence on the results. In the hetero-

geneity only models the standard deviation of the log relative risks is four times greater when the
distribution of the random e�ects is normal, and two and a half times greater with the Student’s
t distribution. This drastic change in �v is reected in the ratio of the relative risks which is also
greatly reduced when the outlying ward is removed. The Student’s t distribution accommodates
the outlying ward to some extent but sensitivity remains. When the outlier is excluded the relative
risk of the missing area is estimated, as expected, as approximately 1 under the non-spatial models.
Under the spatial models the relative risk is estimated as 1.3 because of the local smoothing that
has been carried out. The top row of Figure 9 shows how the posterior means of the �i are related
to the SMRs. We see that in each of the plots there is a large amount of shrinkage, particularly
when the outlier is removed.
As a simple exploratory tool, we propose to measure the level of shrinkage in the heterogeneity

only model via the following method. First consider the situation in which we have Z ∼ N(�; �′2)
with �′2 known and the prior for � given by � ∼ N(�; �2). In this case we have

E[�|Z] =w� + (1− w)Z

where w= �′2=(�′2 + �2), that is, the posterior mean is a weighted combination of the prior mean
and the observed data. The weight 0 ¡ w ¡ 1 can be interpreted as the degree of shrinkage to
the prior; values close to 1 indicate high shrinkage. If we approximate the (�rst-stage) distribution
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of log SMRi by N(log �i; �2i ) then, by analogy, we can write

E[log �i|Y ] =wiE[�|Y ] + (1− wi) log SMRi (12)

taking SMRi=(Yi + 0:5)=Ei if Yi=0 (for a justi�cation for the addition of 0.5 see Clayton and
Kaldor [22]). Re-arrangement of (12) gives

wi=
E[log �i|Y ]− log SMRi

E[�|Y ]− log SMRi
(13)

From (12) and (13) we see that a weight close to one indicates that a large amount of shrinkage
to the overall mean has occurred. In the bottom row of Figure 9 we plot histograms of the weights
wi and see that, when the outlier is removed, this distribution is far more concentrated near 1. The
high shrinkage is due to the small expected numbers in most wards, leading to large uncertainty
in the SMRs and hence low weight given to the observed relative risk in each area.
This example shows that the data should be carefully examined for outliers as inference can

be highly sensitive to their presence. In general, the cases that lead to the outlier should be
investigated to determine whether, for example, the correct residential addresses were recorded or
whether duplicates are present in the database. In the remaining analyses we exclude the outlier
and treat the area as missing.
We note that little work has been carried out in the area of diagnostics (including outlier

detection) in hierarchical models; see, however, the papers and accompanying discussion of Hodges
[47] and Langford and Lewis [48].

4.2. Ecological association with deprivation

We now examine the relationship between risk and deprivation (as measured by the Carstairs
index). A simple approach is to assume a log-linear relationship as in (5). The smooth lines in
Figure 10 show estimates of the relative risk exp(�) corresponding to a unit change in the Carstairs
index for each of the heterogeneity only and convolution models. We see that the relative risk
is greatly reduced when the spatial component is included in the model. This is because the
Carstairs index has spatial structure (Figure 6) and hence there is confounding between the index
and the unmeasured risk factors that are being picked up by the spatial random e�ects. This
supports the interpretation given by Besag et al. [23] that the Ui’s are surrogates for unknown
or unobserved spatially structured covariates, and that the ultimate goal is to identify and include
su�cient covariate information so as to eliminate the need for spatial surrogates.
The above approach, though simple, may be too restrictive if the association is not of log-linear

form. As an alternative we can discretize the deprivation index and treat the resultant variable
as a factor. The coarseness of the discretization is a trade-o� between the sparsness of the data
and the exibility produced. We choose to split the index into deciles but then place a �rst-order
smoothing prior on the coe�cients. This model is exible but smooths out abrupt changes which
is consistent with our prior beliefs of a smooth relationship. Speci�cally, if �m represents the e�ect
of level m of deprivation on the log relative risk, m=1; : : : ; 10, we have

�m|�m′ ; m′ 6=m ∼ N(�m−1; �2); for d=2; : : : ; 9

with �1 assigned a at prior. The parameter �2 is related to the variability in the factor levels �m.
Figure 10 shows the resultant relationship, via the posterior means of exp(�m). We see that, as in
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Figure 10. Association between relative risk and the Carstairs deprivation index using a log-linear
regression and a �rst-order smoothing prior on the factor coe�cients, for the heterogeneity and

convolution second-stage models.

Figure 7, initially the relative risk increases with increasing deprivation but then attens out at a
deprivation score of around 4. Again we see that the relationship is attenuated under the spatial
model. Hence we observe di�erent behaviour to the simple log-linear model which demonstrates
the advantage of the discrete approach from a descriptive point of view. For the sake of parsimony,
a log-linear model with a threshold may provide a sensible compromise.

4.3. Prior sensitivity

A number of papers [29; 35; 49] have considered hyperprior speci�cation and prior sensitivity with
respect to the variance components �2v , �

2
u and !2u. We let Ga(a; b) denote the gamma prior with

mean a=b and variance a=b2 and examine three separate priors for the inverse of each variance
component: (i) the choice a= b=0:001 that has often been used as a default; (ii) the choice
a=0:5; b=0:0005 that was suggested by Kelsall and Wake�eld [50] to provide a plausible range
for relative risks, and (iii) the choice a=10; b=0:35 which has been previously suggested by
Bernardinelli et al. [49]. This latter choice corresponds to a strong prior belief that the ratio of
the 5 per cent and 95 per cent relative risks in the heterogeneity only model is approximately
1.85. Under this model, for small �2v , �v is approximately equal to the standard deviation of the
relative risks. We also consider a fourth choice of prior, which is the uniform prior on the interval
(0,1) for the variance parameters. On the interval (0,1), this prior shows similar behaviour to the
inverse exponential prior proposed for the variance components of model (5) by Besag et al. [23];
however, their prior is improper and cannot be �tted using the WinBUGS software.
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Figure 11. Comparison of four hyperprior distributions, shown on the scale of the random e�ects variance.

Figure 11 shows the four priors on the variance scale. We see that that the choice a=10; b=
0:35 for the gamma distribution does not place much prior probability on small variances. Although
the choice a= b=0:001 is very at, it also has little mass for very small variances.
For the joint model, the parameter � that controls the strength of the correlations (via exp(−d�)),

was assigned a uniform prior on the range (l; u). The endpoints were chosen so that, if dmax de-
notes the maximum distance between centroids in the study region, the correlations at distances
dmax=2 and dmax=20 were 0.01 which corresponds to l=0:16 and u=1:6. This prior acknowledges
therefore that we cannot detect very short or very broad-scale correlations. The latter is because
of non-identi�ability between a non-zero log relative risk surface with no spatial dependence and
a surface with zero mean and high spatial dependence.
Table III summarizes the results under the four priors, for each of the three models. We see

that the standard deviation of the non-spatial random e�ects is very sensitive to the choice of
prior with the Ga(0.5,0.0005) prior producing the smallest values and the U(0,1) prior the largest.
This is consistent with Figure 11 since large values of the variance (and hence standard deviation)
are more probable under the latter prior. The sensitivity is not evident for the spatial standard
deviations since �u is not small and hence is consistent with all four priors. The relative risk
ratios reect the sensitivity to the non-spatial component. This provides further evidence that great
care must be taken when prior distributions are assigned. The posterior mean estimates of � imply
that the correlations drop to 0.5 for areas that are at a distance between 1.8 km (�=0:39) to
2 km (�=0:34) apart. Hence the spatial dependence is acting at a relatively small scale (which
is consistent with Figure 8). The relative sizes of �v and �u show that the spatial component is
dominant.
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Table III. Posterior mean summaries under three second-stage models and four third-stage hy-
perpriors. For the convolution prior �u represents the empirical standard deviation of the Ui, and

so is comparable with �v.

Model Prior �v �u RR ratio �

Heterogeneity Ga(0.001,0.001) 0.14 – 1.66 –
Ga(0.5,0.0005) 0.07 – 1.29 –
Ga(10,0.35) 0.19 – 1.89 –
Un(0,1) 0.24 – 2.21 –

Convolution Ga(0.001,0.001) 0.10 0.22 2.29 –
Ga(0.5,0.0005) 0.04 0.21 2.03 –
Ga(10,0.35) 0.18 0.20 2.43 –
Un(0,1) 0.16 0.25 2.69 –

Joint Ga(0.001,0.001) 0.14 0.24 2.59 0.39
Ga(0.5,0.0005) 0.07 0.23 2.33 0.37
Ga(10,0.35) 0.18 0.20 2.60 0.34
Un(0,1) 0.14 0.27 2.87 0.36

Figure 12 shows the posterior means of the random e�ects plotted against each other for priors
1, 2 and 4 (the results for prior 3 are qualitatively similar to those for prior 1 and are not shown).
The results of Table III are reinforced with the non-spatial random e�ects being sensitive to the
prior choices and the spatial random e�ects being robust to this choice.
Figures 13–16 show the maps of the posterior means of the relative risks and the posterior prob-

abilities that these relative risks exceed 1 under the heterogeneity-only model with Ga(0.5,0.0005)
prior on �−2

v , the heterogeneity-only model with the U(0,1) prior on �2v , and the convolution and
joint models with Ga(0.5,0.0005) on each of the inverse variance components. We note that the
heterogeneity-only map is virtually at for the model using the Ga(0.5,0.0005) prior on �−2

v , while
the convolution and joint maps, and to a lesser extent the heterogeneity-only map with U(0,1) prior
on �2v , display a region in the south-east with increased risks. This area of apparent high relative
risk is consistent with the eastings and northings estimates obtained in Section 3. The convolu-
tion and joint models produce qualitively similar maps though there are di�erences in individual
wards.
As a �nal check on prior sensitivity, we also considered replacing the Gaussian assumption for

the conditional distribtion of the spatial random e�ects in the convolution model by a heavy-tailed
double exponential distribution (see Besag et al. [23]). However, the results were virtually identical
to those using the Gaussian model, so we do not report them here.

5. DISCUSSION

There are many unresolved issues in disease mapping. Careful use of techniques based on hier-
archical models are an improvement over non-hierarchical models, however. In particular, disease
maps produced using Bayesian smoothing methods are likely to be less visually misleading than
their predecessors based on non-hierarchical approaches. The choice of prior distributions on the
variance components �2u, �2v and !2u in hierarchical models is clearly very important however.
For !2u in particular this choice is non-intuitive because a conditional variance depends on the
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Figure 12. Association between spatial (Ui) and non-spatial (Vi) random e�ects under di�erent models.
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Figure 13. (a) Mapped posterior means E[�i|Y ] and (b) posterior probabilities Pr(�i¿1|Y ), resulting from
the heterogeneity-only model with a Ga(0.5,0.0005) prior on �−2

v .
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Figure 14. (a) Mapped posterior means E[�i|Y ] and (b) posterior probabilities Pr(�i¿1|Y ), resulting from
the heterogeneity only model with a U(0,1) prior on �2v .
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Figure 15. (a) Mapped posterior means E[�i|Y ] and (b) posterior probabilities Pr(�i¿1|Y ), resulting from
the convolution model with Ga(0.5,0.0005) priors on the inverse variance components.
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Figure 16. (a) Mapped posterior means E[�i|Y ] and (b) posterior probabilities Pr(�i¿1|Y ), resulting from
the joint model with Ga(0.5,0.0005) priors on the inverse variance components.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2493–2519



ANALYSIS OF DISEASE MAPPING DATA 2517

neighbourhood structure and in an epidemiological context this structure, in general, varies across
the study area. Prior and posterior distributions may be graphically compared to informally assess
the e�ect of the prior. We also note that when spatial and non-spatial random e�ects are intro-
duced, one would expect negative correlation between the variance components and this is not
usually acknowledged when priors are speci�ed.
In general, the inclusion of spatially dependent random e�ects in disease mapping should be

considered as a way of adjusting for unknown confounders. Hence sensitivity of the results to the
speci�c model chosen for spatial dependence indicates that the results should be treated with great
caution. Related to this issue are questions such as whether to include terms to model broad-scale
trends, or whether a stationary or a non-stationary model is preferrable. For larger study areas in
particular, we would expect the form of the spatial dependence to change across the region and
hence some exibility is required, though the information available to estimate the parameters of
such a model will usually be sparse.
As an alternative to modelling the spatial dependence via a set of discrete random e�ects for

each area, the underlying continous risk surface may be modelled. Such models are typically based
on Poisson point processes; see, for example, Wake�eld and Elliott [18], Lawson and Clark [51]
and (for a non-epidemiological application) Wolpert and Ickstadt [24].
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